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Abstract. It has been proven that the quasiperiodicity and magnetic phase transition of a 
oze~dimensinnz! zpeiodic sys!e- depezd on the char=c!czis!ic va!cer nfthe corespondi!tg 
substitution rule. By means of the principle of the argument we have developed a general 
method to study the properties of the characteristic equations of any substitutional sequen- 
ces, which relates to the study of one-dimensional quasiperiodic lattices. Particularly, a 
class of typical sequences, which consist of k letters and is given by the substitution rule 
A,-A, ,A,-A,  ,.._, A,_ , -At ,A , -mA,nA, (k=2 ,3 ,4  ,... andm,n=1 ,2 ,3  .... )are 
systematically studied. 

In recent years, substitutional structures (or deterministic aperiodic structures) have 
been studied in many respects [l-91. The majority of these works have been focused 
on the Fibonacci lattices or superlattices [7,8]. But other kinds of aperiodic systems, 
such as generalized Fibonacci systems [lo, 111, Thue-Morse and generalized Thue- 
Morse aperiodic crystals [12-141, Rudin-Shapiro sequence [15], and three-tile SML 

and mathematicians. Particularly, it is worth mentioning that the universal problems 
of trace maps for any substitution sequences have been taken into account [17,18]. 
On the other hand, the characteristic equations of generating matrices for any substitu- 
tion structures consisting of more than two building blocks have not yet been studied 
thoroughly [19]. The characteristic values are very important for the properties of 
substitutional structures. The largest eigenvalue of a substitution matrix is often referred 
to as its Perron-Frobenius eigenvalue. The absence of any other eigenvalue larger than 
unity in modulus is usually called the Pisot-Vijagaraghavan (PV) property and the 
quasiperiodicity of a one-dimensional substitution structure is determined by its PV 
property. In fact, it was first introduced by Bombieri and Taylor [ZO] as a definition 
of quasiperiodicity with Dirac delta peaks in the Fourier spectrum of an infinite 
deterministic structure. They have shown that, generally, a necessary and sufficient 

spectrum is that the characteristic equation of the generating matrix should have only 

t Address for correspondence. 

o,??3oiperiodic !attires [ !6 ,  17j, have a!so amacted much attention of both physicists 

con(jiiion for ihe presence of coinpoiieiiij iii the Fourier 
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one eigenvalue greater than unity in modulus. GodrCche and Luck [21] have taken a 
multifractal analysis in reciprocal space for several kinds of self-similar substitutional 
structures. Their results are consistent with the definition of Bombieri and Taylor 
mentioned above. Severin and Riklund have used the Fourier spectrum to classify 
families of generalized Fibonacci lattices [22]. The results they found are in agreement 
with the definition of Bombieri and Taylor, even though their definition of Fourier 
transform is not the same as that of Bombieri and Taylor. In addition, some authors 
have studied the phase transition problems of the one-dimensional aperiodic quantum 
king model, in which the exchange couplings are arranged according to a relevant 
substitutional sequence with only two letters, such as the Fibonacci and generalized 
Fibonacci sequences [23-261. The phase transition, in the strict sense, can occur only 
if there is a critical coupling for which the zero energy is allowed. This energy value 
corresponds to an infinite correlation length that is the necessary and sufficient condition 
for the existence of the phase transition on a one-dimensional quantum Ising model. 
Benza et a1 I261 have considered quantum king chains formed by distributing two 
coupling parameters according to the generalized Fibonacci sequences. They have 
shown that such models (and by a straightforward generalization all models obtained 
with arbitrary two-letter substitution rules) exhibit a magnetic phase transition only if 
the respective rules has the PV property. Following the lines of these authors, it can 
be directly proven that the necessary and sufficient condition for the occurrence of 
phase transition is that the product of all exchange couplings equals one for the infinite 
limit of chain. Benza et a/ [26] discussed a finite case in which this condition (i.e. the 
product of all exchange couplings equals one) can always be satisfied by a suitable 
choice of the values of the exchange couplings, but it seems that they have ignored 
the fact the above condition cannot be satisfied for the infinite limit in some one- 
dimensional quantum Ising models without a magnetic phase transition (for example, 
cases (ii) and (iii) in [26]). If the infinite limit of the chains is taken into account, the 
condition that the product of all (infinite) couplings equals one is necessary and 
sufficeint to ensure a phase transition. 

Returning to the substitution structures, the above condition is equivalent to the 
requirement that one or more eigenvalues of the characteristic equation is smaller than 
unity in modulus, and it is consistent with the results of previous works [23-261 for 
the quantum king models with two-letter substitution rules. In this paper, we will deal 
with the same problem of quantum Ising models with more than two kinds of coupling 
parameters and the quasiperiodicity of any substitutional sequences. In detail, we will 
investigate the quasiperiodicity and phase transition problem relating to a class of 
one-dimensional systems with typical substitution rules A,  + A*, Al+ A,, . . . , AI-, + 

Ak, Ak+ mAknA, ( k  =2,3,4, .  . . and m, n = 1,2,3, .  . .). 

problem of substitutional sequences is based on the principle of the argument (and 
RouchC's theorem) from complex variable theory [28]. To explain our general method, 
we first study a specific case, then show how to apply this method to the general case. 
The specific case obeys the following substitution rules: 

r- rt.^ _-_-__+ _^___ .Le --..--..I - = t L n A  f-r -+..A.,:-- +ha ,-hQ+Qn+n4d:c wnh-n 
111 L U G  p r J s l l r  yayrr, L L L C  ICL1C.P' lllcilll"" I". "LY"J. l .6  La.- . , . I Y I ' . * L C L I O I I I  l Y l U I  

AI+ A,, A,+A,, . . . , Ak-,+Ak, Ak + mAknAl (1) 

where mAknA, represent a string of mAks and nA,s. Setting k = 2 gives the generalized 
Fibonacci sequence, in particular for the Fibonacci sequence m = n = I .  Similarly, the 
poly-tile aperiodic sequence [16, 171 can be obtained by setting m = n = 1 and k = 
3,4,5,. . . . According to the definition of generating matrix [ 19,201, we can obtain 
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the corresponding characteristic equations as: 

A *  = mA"'+ n. 

By means of the substitition Z = A-', we have 

nZk + mZ - 1 = 0. ( 3 )  
It is very complicated to calculate the k roots of this equation. Fortunately, the central 
problem considered here relates to only the distribution of the k characteristic values 
on the complex A-plane, i.e. the distribution of the k roots of ( 3 )  on the regions /Z/ 6 1 
and /ZI> 1 in the Z-plane shown in figure l (n ) .  It is obvious that the k roots of (3 )  
are the k zeros of following functions: 

Gi, ,(Z) = Z * + ( m / n ) Z -  l / n  for n P m + l  

and (4) 

FX,..(Z) = z + ( n / m ) z * - l / m  for n < m - 1  

The principle of the argument [28] states that the sum of the orders of zeros of the 
function Gi,.(Z) inside region A with bounding curve C in the Z-plane is determined 
by the argument increment of the function when the variable Z completes a cycle 
along the closed curve c, i.e. 

1 d Z  G:"(Z) [Zeros], = - [Arg G % ( Z ) ] ,  = I - - 
257 c 27r1 Gkn(Z) 

provided no zero actually lies on curve C. For example, figure l ( b )  shows that for the 
well known Fibonacci sequence the argument increment of the function F ( Z )  is 257, 

therefore only one characteristic value is greater than unity in moduli since there is 
oniy one root with absoiute vaiue smaiier than unity. This principle is an eiementary 

121.1 :WlRe 
-1 la1 

-2  -1 0 1 2 

FlZI=Z*rZ-l 

:f+-fe c 

f 
U 

Arbitrary units 

Figure 1. The application of the principle of the argument to characteristic value problem. 
( b )  Shows the cuwe of the F ( Z )  = Z'tZ - 1 corresponding to the characteristic equation 
of the Fibonacci sequence while the complex variable Z is confined to the unit circle IZ/ = I 
shown in ( a ) .  



4760 Wenji Deng et al 

consequence of the fundamental theorem of residues 1281. Noting that the function 
G:,(Z) we deal with here is a polynomial, the zeros of it must be the simple poles 
of the integrated function G'(Z)/G(Z).  Therefore the contour integral of ( 5 )  equals 
the number of zeros of G:,(Z) contained in the interior of bounding curve C, each 
zero being reckoned according to its degree of multiplicity. In the following, we will 
systematically study, by means of the principle of the argument, the distribution of 
characteristic values of the substitutional sequences defined by (1) for all possible 
values of the positive integers k, m and n. 

( i )  The case n a m t  I 

To investigate the substitutional sequences of this case, Rouchi's theorem is most 
effective. Rouchi's theorem is a simple corollary of the principle of the argument [28]. 
ii ihai if ii-,e fiinciions ,r(i(z; g(i(zj ate regu;ar and on a ciossd 
contour C and If(Z)l> lg(Z)l on C thenf(Z) andf (Z)+g(Z)  have the same number 
ofzeros within C. In our problem, the funct ionsf(Z)=Zk and g (Z)=(m/n)Z- l /n  
satisfy the prerequisite If(Z)l> lg(Z)l on the unit circle IZI = 1 except at one point, 
Z = -1, for n = m + 1 and k being an even integer; it is easy to avoid this point by 
indenting our contour IZI = 1 in a small enough neighbourhood of the point Z = -1. 
So it follows from Rouche's theorem that the function G:,.(Z) has the same number 
of zeros of f ( Z ) = Z *  within the region lZls 1. In other words, the substitutional 
sequences of this case (n a m + 1) have k characteristic values with amplitudes greater 
than or equal to unity. Figure 2(a-c) show the typical curves of the functions G*,,.(Z). 
With the help of the principle of the argument, one can also see clearly from the figures 
that the results are consistent with the above general conclusion. Figure 2(a) shows 
that the substitutional sequence with k = 4 (even integer), m = 3 and n = m + 1 = 4 has 
one characteristic value with absolute value equal to unity and three characteristic 
values greater than unity in moduli. Figure 2(b) shows that the substitutional sequence 
with k = 3 (odd integer), m = 1 and n = m + 1 = 2 has three characteristic values greater 
than unity in moduli. Figure 2(c) shows that the substitutional sequence with k = 2  
(even integer), m = 2 and n = 5 # m + 1 has two characteristic values with absolute 
values greater than unity. 

(ii) The case n - c m - 1  

In exactly similar fashion we can, generally, prove that the substitutional sequences 
of this case have only one characteristic value with amplitude greater than unity, and 
no characteristic value equal to unity in modulus. Figure 3(a, b) depict the typical 
curves of the Functions F L J Z ) ,  which show cieariy that any of these sequences has 
one characteristic value with modulus greater than unity. 

(iii) The case n = m 

To deal with the substitutional sequences of this case, we define another kind of 
function: 

Dk(Z) = Z X + Z  

and 

D ~ J Z )  = ZX+Z-  l/m. (7) 
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Arbitrary units 

Figure 2. The curve of Gk.(Z) when lZI= 1 for three typical sequences with n Z  m + l .  
( a )  k = 4 ,  m = 3  and n = m + 1 = 4 ;  ( b )  k = 3 ,  m = l  and n = m + l = 2 ;  ( c )  k = 2 ,  n = 5 >  
m + l .  

I b l  
Arbitrary units 

Figure 3. The curve of F L . ( Z )  when IZI= 1 for two typical sequences with n r m - I .  
( a )  k = 8 ,  m = 3  and n = m - I = 2 .  ( b )  k =  5 ,  m = I6 and n = 3 a  m - I .  
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It is obvious that the curve of the function D)n,JZ) can he directly obtained by moving 
the curve of the function D k ( Z )  a distance l / m  along the negative direction of the 
real axis, or, the curve of D)n,.(Z) is the same as curve D k ( Z )  except the origin 0; 
is shifted to l/m. By using the principle of the argument, one can easily prove that, 
when the variable Z completes a cycle along the unit circle IZI = 1 shown in figure 
l (a) ,  the number of times that the curve of Dk,,,(Z) passes through the origin 0; 
equals the number of zeros of Dk,,,(Z) lying on the contour IZI = 1, and the number 
of circuits surrounding the origin OL by the curve of Dk,,,(Z) equals the number of 
zeros of D)n,,(Z) lying within the unit circle 121 = 1. Figure 4(a-c)  show the curves 
of the function D k ( Z )  for k = 3 ,  5 and 8, respectively. One can see from figure 4(a) 
that any of the substitutional sequences with k = 3 has, for all possible integers 
m = 1,2,3,. . . , onliy one characteristic value greater than unity in modulus. Figure 
4(6) shows us that the substitutional sequences with k = 5 and n = m = 1 has only one 
Characteristic value with amp!i!ude greater than ~ n d  !WO ch~zcteristic vz!ues 
with amplitudes equal to unity, and that three characteristic values are greater than 
unity and no one equals unity in modulus when m becomes greater than one. It follows 
from figure 4( E) that any of the substitutional sequences with k = 8 and small enough 
values of the integer m has three characteristic values with absolute values greater 
than unity, hut when the integer m becomes great enough, i.e. the origin 0; for 
D)n,,(Z) lies to the left of the point 0,, the sequences with such an integer m will 
have five characteristic values gfeater than unity in moduli. An example (for k = 11) 
discussed below will illustrate how we apply the principle of the argument to finding 

Figure 4. The curve of D,(Z) when IZI= I for three typical sequences with n = m .  
( a )  k = 3 ;  ( b )  k = 5 ;  (c)  k = 8 .  
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the general results about the characteristic values for the substitutional sequences with 
arbitrary integer k 

When the complex variable Z is confined to the unit circle /ZI = 1, equations (6) 
and (7) can be written as follows, by means of the substitution Z=exp(iB) 

D,(B)=exp(ikO)+exp(iO) (8) 

DL,,(B)=exp(ikB)+exp(i8)-1/m. (9)  

and 

It is easy to see that the real axis is an inversion axis of the closed curve of the functions 
Dk(6') since D k ( - 8 ) = D f ( 8 ) .  Figure 5 ( a )  depicts the curve of D,,(O).  According to 
the principle of the argument, we know that, by carefully studying the curve of D,,(O), 
the number of zeros of D&,,(Z) (m = 1,2, .  . .) is determined by the intersections O,, 
0,, and 0, of the closed curve lying on the positive real axis. These points Oo, 0, 
and 0, correspond to the intersections of the curve of cos( 8 )  in first quadrant for the 
argument 8 and the curve of cos(ll8) in the fourth quadrant for the argument 118 
shown in figure 5 ( b ) .  One can find that the function D & ( Z )  has two zeros with 
amplitudes equal to unity and three zeros with amplitudes smaller than unity, and the 
function D t J Z )  with m z 2  has five zeros with amplitudes smaller than unity and 
no zero with amplitude equal to unity. 

1 0  Re 
2 

1 05 

0 0 

-0 5 -1 

-1 0 -2 
Arbi t rary  units 1/3 112 

O I ~ I  
Figure 5. ( a )  The curve of D,,(O), the real axis lies in the vertical direction. ( b )  The curve 
C, of cas(0) and the curve C, of cos(ll8) far OS BGwl2. 

The above results can be generalized in a straightforward manner to the functions 
DL,,(Z) for any possible integers k and m. The number of intersections of the curve 
of cos(8) for Os 8 s  rr/3 and the curve of cos(k8) in the fourth quadrant for the 
argument k8 is 2[(k+ 1)/6]+ 1 ([ ] represents the greatest integer function), and these 
points 0,, 0,, . . . , 0,. ( p ' =  [ ( k +  1)/6]) correspond to the intersections 
0,, O , ,  . . . , O,, of the closed curve of D,(S)  lying to the right of the origin 0: (if 
[ (k+1)/6]=(k+1)/6 then 0,, was on the point 0% Therefore, if [ (k+1)/6]= 
(k+1)/6 then two zeros Z,,,=exp(+irr/3) of DL,,(Z) has absolute values equal to 
unity, and 2[(k+1)/6]-1 zeros are smaller than unity in moduli; if [(k+1)/6]# 
( k +  1)/6 then 2 [ ( k +  1)/6]+1 zeros of DL,,(Z) are smaller than unity in moduli, and 
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no zero equals unity in modulus. In addition, the total number of intersections of the 
curve of cos(k0) in the first quadrant for the argument 0 and the curve of cos(k0) in 
the fourth quadrant for the argument k0 is 2[k/41+ 1. These points O,, 0,. . . . , 0, 
( p  = [k/4]) correspond to the intersections O,, O , ,  . . . , 0, of the closed curve of Dk( 0) 
lying on the positive real axis. Because the new origin 0; moves to the origin 0 when 
the integer m increase continually, the number of zeros of Dfn,,,(Z) lying on or within 
the unit circle 121 = 1 does not decrease with the increase of integer m for a given 
integer k So we can make a conclusion that, for any substitutional sequence of case 
m = n, the total number of characteristics values with amplitudes greater than or equal 
to unity does not decrease with the increase of integer m for a given integer k If 
n = m = 1  and6p’ - l<k<6p’+5  (p’=O, 1,2, ... ) then2p’+l characteristicvaluesare 
greater than unity in moduli; if n = m = 1 and k = 6p - 1 ( p  = 0, 1,2, ,  , .) then 2p - 1 
characteristic values are greater than unity in moduli and two characteristic values 
have amplitudes equal to unity. If 4p < k < 4( p + 1) ( p  = 0,1,2,. . .) and m = n being 
great enough then the number of characteristic values with amplitudes greater than or 
equal to unity gains the maximum 2p + 1. 

According to the above analytical results on characteristic values of substitutional 
sequences, we may draw conclusions concerning the quasiperiodicity of the determinis- 
tic aperiodic sequences and phase transition behaviour of the quantum king model 
related to the sequences. Because the characteristic equation of any substitutionul 
sequence with n 3 m + 1 has no eigenvalue with amplitude smaller than unity, all of 
these substitutional sequences are not quasiperiodic sequences, and the corresponding 
one-dimensional aperiodic Ising model cannot undergo a magnetic phase transition. 
On the other hand, all of the substitutional sequences with n s m - 1 are quasiperiodic, 
and the corresponding one-dimensional quasiperiodic Ising models can undergo a 
magnetic phase transition since any of them has only one characteristic value greater 
than unity and none equal to unity in modulus. If m = n then all of the substitutional 
sequences are non-quasiperiodic except a few particular cases k = 2, 3 and 4, but all 
of the corresponding one-dimensional king models can undergo a magnetic phase 
transition. 

The investigation of the Fourier spectrum is the first step in the study of the 
substitution structures. The characteristics of spectrum are related to other physical 
properties. Bombieri and Taylor [20] have shown that the PV property of a substitution 
structure and the quasiperiodicity of the corresponding aperiodic structure and the 
quasiperiodicity of the corresponding aperiodic structure generally come together. A 
series of works on the Fourier spectrum of the aperiodic structures is consistent with 
Bombieri and Taylor’s rule [21, 22,291. The only known exception is the Thue-Morse 
sequence, of which the Fourier transform is singular continuous (i.e. neither Dirac 
peaks nor a smooth distribution in its spectrum) nevertheless this substitution has the 
PV property. But this paradox can be easily understood by the fact that a simple 
prefactor vanishes in the Fourier amplitude for the values of wavevector where a delta 
peak would be expected [22,29]. On the other hand, Elser has provided a projection 
method to obtain a quasiperiodic structure [30]. It is obvious that the delta peaks must 
appear in the Fourier spectrum of such a projected structure [31]. Therefore we can 
conjecture that the substitution structures without PV property cannot be constructed 
by using the ordinary projection method, and that any attempt to calculate the 
diffraction pattern of them using this method [30,31] would be in vain. For example, 
the substitution structure of m = n = 1, k = 6 cannot be obtained by projecting a set of 
points of the regular lattice of higher dimensional space onto an embedded line, 
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because the substitution matrix has three eigenvalues greater than unity in moduli, 
and the relevant Fourier spectrum should be singular continuous. 

Doria and Satija [241 have numerically studied the one-dimensional Fibonacci 
quantum Ising model in transverse magnetic field. They have found a novel feature 
of this model: a phase transition occurs for a critical value of the couplings, above 
which there exists long-range order. Bentz et al [26] have studied the phase transition 
in the generalized Fibonacci quantum king models. They have confirmed that all 
models obtained with arbitrary two-letter substitution rules exhibit a magnetic phase 
transition only if the corresponding rules has the PV property. This result should be 
modified when being applied to models with more than two letters. Generally speaking, 
the sufficient and necessary condition for the existence of phase transition in a 
one-dimensional quantum king model is that one or more eigenvalues of the corres- 
ponding substitution matrix are smaller than unity in moduli. Following this line, we 
have proven in the present paper that all of the models of n s m can undergo a phase 
transition, but those of n * m + 1 cannot. A detailed discussion with more numerical 
results will be presented in [27]. 

Finally, we would like to emphasize again that, for any k-letter substitutional 
sequence, the problem of how many characteristic values have amplitudes greater than 
unity and how many characteristic values equal unity in moduli can be solved by 
means of the principle of the argument. This extension is straightforward. So the 
quasiperiodicity of any substitutional sequences can be determined, and whether or 
not the corresponding one-dimensional aperiodic king model undergoes a magnetic 
phase transition can also be immediately resolved. 
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